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Abstract

This work is focused on the numerical study of steady, laminar, conjugate natural convection in a square enclosure with an inclined thin fin
of arbitrary length. The inclined fin is attached to the left vertical thin side of the enclosure while the other three sides are considered to have
finite and equal thicknesses of arbitrary thermal conductivities. The left wall of the enclosure to which the fin is attached is assumed heated
while the external sides of the other three surfaces of the enclosure are cooled. The inclined thin fin is perfectly conductive and is positioned in
the middle heated surface of the enclosure. Three different fin lengths equal to 20, 35 and 50 percent of the heated surface are considered. The
problem is formulated in terms of the vorticity-stream function procedure. A numerical solution based on the finite-volume method is obtained.
Representative results illustrating the effects of the thin fin inclination angle and length and the thermal conductivity of the thick surfaces on
the streamlines and temperature contours within the enclosure are reported. In addition, results for the local and average Nusselt numbers are
presented and discussed for various parametric conditions.
© 2006 Elsevier Masson SAS. All rights reserved.

Keywords: Natural convection; Conjugate; Square enclosure; Thin fin; Inclined fin; Finite volume
1. Introduction

Natural convection in enclosures has attracted many re-
searchers due to its wide range of applications, such as building
thermal design, nuclear reactor design, solar energy collector,
and others. The addition of a fin or array of fins to the en-
closure surface(s) is a reliable method to increase the overall
heat transfer rate between the heat dissipating surface(s) and
the heat absorbing surface(s). Accordingly, the study of nat-
ural convection from finned surfaces has been the subject of
many experimental and numerical investigations. These investi-
gations are recently motivated by the advance in the electronics
technology and the need for reliable and efficient cooling tech-
niques. The increase in heat transfer rate due to the presence
of a fin or array of fins depends greatly on the location, ma-
terial and geometry of the fin(s). Starner and McManus [1]
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presented natural convection data for four different rectangu-
lar fin arrays attached to a horizontal, vertical and an inclined
plate. A similar experimental study was carried out by Welling
and Wooldridge [2]. They concluded that there exists an opti-
mum fin height for every fin channel width. The flow pattern
associated with free convection heat transfer from horizontal
fin arrays has been also investigated by Harahap and McManus
[3]. They showed that free convection heat transfer associated
with a horizontally oriented fin array depends on the height of
the fins.

Natural convection heat transfer in enclosures with vari-
ous wall conditions have been extensively considered in the
open literature. Owing the many possible practical applications,
modification of heat transfer in cavities due to the presence of
fin(s) attached to enclosure’s wall(s) has received some con-
sideration in recent years. Some of these applications can be
found in solar collectors, nuclear reactors, heat exchangers and
electronic equipment. Heat transfer rate through the enclosure
can be controlled by means of fin’s configuration. Oosthuizen
and Paul [4] considered free convection heat transfer in a cavity
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Nomenclature

g gravitational acceleration . . . . . . . . . . . . . . . . . m s−2

Gr Grashof number, = gβT (T h − T c)W
3/ν2

k thermal conductivity . . . . . . . . . . . . . . . W m−1 K−1

l fin length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m
L dimensionless fin length, = l/W

n distance normal to s-axis . . . . . . . . . . . . . . . . . . . . m
N dimensionless n-coordinate, = n/W

NNR Nusselt number ratio at solid–fluid interface,
= Nuwith fin/Nuno fin

Nu local Nusselt number at solid–fluid interface
Nu average Nusselt number at solid–fluid interface
p fluid pressure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Pa
Pr Prandtl number, = ν/α

Ra Rayleigh number, = gβT (T h − T c)W
3/(αν)

s coordinate adopted for distance along enclosure
surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m

S dimensionless s-coordinate, = s/W

T temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . K
u x-component of velocity . . . . . . . . . . . . . . . . . m s−1

U dimensionless X-component of velocity, = uW/α

v y-component of velocity . . . . . . . . . . . . . . . . . m s−1

V dimensionless Y -component of velocity, = vW/α

w thickness of the cooled walls . . . . . . . . . . . . . . . . . m
W horizontal/vertical dimension of the enclosure . . m
x horizontal distance . . . . . . . . . . . . . . . . . . . . . . . . . . m
X dimensionless horizontal distance, = x/W

y vertical distance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . m
Y dimensionless vertical distance, = y/W

Z dimensionless heated surfaces length, = 1 + 2L

Greek symbols

ε thin fin inclination angle . . . . . . . . . . . . . . . . . . . . . . ◦
α thermal diffusivity . . . . . . . . . . . . . . . . . . . . . . m2 s−1

βT thermal expansion coefficient . . . . . . . . . . . . . 1 K−1

κ solid-to-fluid thermal conductivity ratio, = ks/kf
ν kinematic viscosity . . . . . . . . . . . . . . . . . . . . . m2 s−1

θ dimensionless temperature,
= (T − T c)/(T h − T c)

ρ density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . kg m−3

Ω vorticity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 s−1

ω dimensionless thickness of the thick walls, = w/W

Ψ stream function . . . . . . . . . . . . . . . . . . . . . . . . . m2 s−1

ψ dimensionless stream function, = Ψ/α

ψext change of extreme dimensionless stream function,
= ψmax − ψmin

ζ dimensionless vorticity = ΩW 2/α

∇2 Laplacian operator

Subscripts

c cold surfaces
f fluid
h heated surfaces
s solid
with aspect ratios between 3 and 7 with a horizontal plate fitted
on the center of the vertical cold wall. Shakerin et al. [5] con-
sidered natural convection in an enclosure with discrete rough-
ness elements on a vertical heated wall. Frederick [6] reported
a parametric study of natural convection in an air-filled, dif-
ferentially heated, inclined square cavity, with a fin attached
perpendicularly to its cold wall at Rayleigh numbers of 103–105

and partition relative lengths of 0.25 and 0.5. It was reported
that the fin causes convection suppression, and heat transfer re-
ductions of up to 47% relative to the undivided cavity at the
same Rayleigh number. Frederick and Valencia [7] considered
heat transfer in a square cavity with a conducting partition at the
center of its hot wall. They studied the impact of partition length
and conductivity on heat transfer rate. Nag et al. [8] considered
natural convection in a differentially heated square cavity with
a horizontal partition plate on the hot wall. They analyzed the
thermal effect of partition’s length and location for Rayleigh
number range from 103 to 106. Hasnaoui et al. [9] studied nu-
merically a vertical rectangular differentially-heated enclosure
with adiabatic fins attached to the heated wall. The enclosure
aspect ratio was from 2 to 3, the dimensionless fin length from
0 to 0.75, and micro-cavity height from 0.30 to 0.67. Their
study showed that the heat transfer through the cold wall was re-
duced compared to the case without fins and this reduction was
enhanced with increasing fin length and decreasing Rayleigh
number. Scozia and Frederick [10] considered natural convec-
tion heat transfer in a differentially-heated slender rectangular
cavity of aspect ratio of 20 with multiple conducting fins at-
tached on the active cold wall of the cavity. They concluded that
as the inter-fin aspect ratio was varied from 20 to 0.25, the flow
patterns evolved considerably and the average Nusselt number
exhibited maximum and minimum values whose locations de-
pended on the value of the Rayleigh number. Facas [11] studied
natural convection in a slender cavity of aspect ratio of 15 with
fins attached to both vertical differentially-heated walls. For
small fin lengths, the flow was slightly blocked and a multi-
cellular flow structure was observed. For longer fin lengths, the
flow was blocked further and secondary recirculation cells were
formed, in addition to the primary recirculation. As a result,
higher heat transfer rates across the two sides of the cavity were
observed. Lakhal et al. [12] considered natural convection in
inclined rectangular enclosures of aspect ratios of 2.5 or higher
with perfectly conducting fins attached on the heated wall. They
have found that the flow regime at low Rayleigh number is
one of pure conduction and the heat losses through the cold
wall can be reduced considerably by using fins attached on the
heated wall. Bilgen [13] studied natural convection in enclo-
sures with partial partitions attached to the adiabatic horizontal
surfaces. His study covered various geometrical parameters: en-
closure aspect ratio = 0.3–0.4, number of partitions = 1 or 2,
partitions dimensionless position = 0.5–0.6, partitions dimen-
sionless height = 0.0–0.15, Ra = 104–1011. The results showed
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that the flow regime was laminar for Ra up to 108 thereafter tur-
bulent. The heat transfer was reduced (a) when two partitions
were used instead of one, (b) when the aspect ratio was made
smaller, (c) when the position of partitions was farther away
from the hot wall. Shi and Khodadadi [14] reported a detailed
parametric study of flow and heat transfer in a lid-driven cavity
due to the presence of a single thin fin. Three fins with lengths
equal to 5, 10, and 15 percent of the side, positioned at 15 lo-
cations were examined for Re = 500, 1000, 2000, and Pr = 1.
They concluded that the fin slows the flow near the anchoring
wall and reduces the temperature gradients, thus degrading heat
transfer capacity. Shi and Khodadadi [15] also studied steady
laminar natural convection within a differentially heated square
cavity due to the presence of a single highly conductive thin
fin. The study covered three fin lengths, seven fin locations, and
Ra = 104–107. They have stated that for high Rayleigh numbers
the flow field is enhanced regardless of the fin’s length and posi-
tion indicating that the extra heating mechanism outweighs the
fin’s blockage effect. They also reported that better heat trans-
fer performance can be achieved if the thin fin attached to the
hot wall was closer to the insulated walls. Bilgen [16] consid-
ered natural convection in differentially heated square cavities
with horizontal thin fin for Rayleigh number from 104 to 109.
The cavity was formed by vertical isothermal walls and adia-
batic horizontal walls. A thin fin was attached to the hot side.
The parametric study covered fin’s dimensionless length from
0.10 to 0.90, fin’s dimensionless position from 0.10 to 0.90, and
fin’s relative conductivity from 1 to 60. Inclined thin fin was
first considered by Ben-Nakhi and Chamkha [17] who studied
the effects of a heated thin fin length and inclination angle on
steady, laminar, two-dimensional natural convection fluid flow
inside a differentially-heated square enclosure. The study cov-
ered fin inclination angles from 0◦ to 180◦, and dimensionless
fin lengths of 0.2, 0.35, and 0.5.

Many researchers have studied the impact of coupling wall
conduction with natural convection in enclosures. The results
of their works clearly indicate that the conjugate heat transfer
parameter has a significant influence on the fluid flow and heat
transfer characteristics in comparison with those reported for
isothermal thin walls. Kim and Viskanta [18] studied the ef-
fects of wall conduction and radiation heat exchange among
surfaces on laminar natural convection heat transfer in a dif-
ferentially heated two-dimensional rectangular cavity with four
thick walls. Their results indicate that natural convection heat
transfer in the cavity is reduced by heat conduction in the walls.
Kaminski and Prakash [19] analyzed steady laminar natural
convection flow in a square enclosure with one vertical conduct-
ing wall. They concluded that for Grashof number greater than
105, the temperature distribution in the wall shows significant
two-dimensional effects and the solid–fluid interface temper-
ature is found to be quite non-uniform. Du and Bilgen [20]
considered conjugate heat transfer in an enclosure which con-
sists of a conducting vertical wall of finite thickness with a
uniform heat input, an insulated vertical wall and two hori-
zontal walls at a heat sink temperature. They reported that for
low Ra, high solid–fluid conductivity ratio, and high dimension-
less wall thickness at small and large enclosure aspect ratio, the
heat transfer process is dominated by the heat conduction in the
solid wall. For high Ra, low solid–fluid conductivity ratio, and
low dimensionless wall thickness at moderate enclosure aspect
ratio, strong interaction between conduction in the solid wall
and convection in the fluid influences the heat transfer. Liaqat
and Baytas [21] analyzed laminar natural convection flow in a
square enclosure having thick conducting walls. Their conju-
gate analyses showed a significant change in the buoyant flow
parameters as compared to conventional non-conjugate analy-
ses.

The purpose of the present work is to study conjugate natural
convection inside a square enclosure in the presence of a per-
fectly conductive inclined thin fin of arbitrary length attached
at the center of the left heated thin vertical surface. The other
three surfaces of the enclosure are assumed to have finite and
equal thicknesses of conductive solid material and their external
sides are cooled. The effects of fin length and inclination angle
and the solid-to-fluid thermal conductivity ratio on the flow and
heat transfer characteristics are studied.

2. Mathematical model

Consider steady laminar, two-dimensional, conjugate nat-
ural convection inside a square enclosure in the presence of
a perfectly conductive inclined thin fin of arbitrary length at-
tached at the center of the left heated vertical surface. As shown
in Fig. 1, the left vertical surface of the enclosure is assumed
to have a negligible thickness while the remaining three sur-
faces are of finite thicknesses of arbitrary thermal conductivity.
The left vertical surface is uniformly heated and maintained at
a temperature Th whereas the external sides of the other three
thick surfaces are uniformly cooled and maintained at a tem-

Fig. 1. Schematic diagram and coordinate system for a square enclosure with
inclined fin at the center of the hot wall.
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perature Tc. The fluid is assumed to be incompressible, viscous,
and Newtonian having constant thermo-physical properties.

The governing equations for this problem are based on the
balance laws of mass, linear momentum and energy. Taking
into account the assumptions mentioned above, and applying
the Boussinesq approximation for the body force terms in the
momentum equations, the governing equations can be written
in dimensionless vorticity-stream function formulation as:

ζ = ∂V

∂X
− ∂U

∂Y
= −∇2ψ (1)

U
∂ζ

∂X
+ V

∂ζ

∂Y
= Pr∇2ζ + Ra Pr

(
∂θ

∂X

)
(2)

U
∂θ

∂X
+ V

∂θ

∂Y
= ∇2θ (3)

For the solid region,

∇2θ = 0 (4)

The boundary conditions in dimensionless form become
At all walls and in the solid region U = V = ψ = 0. e5

X = 0, 0 � Y < ω
∂θ

∂X
= 0 (5a)

X = 0, ω � Y � 1 + ω ζ = −
(

∂2ψ

∂X2

)
, θ = 1.0 (5b)

X = 0,1 + ω < Y � 1 + 2ω
∂θ

∂X
= 0 (5c)

X = 1, ω � Y � 1 + ω

ζ = −
(

∂2ψ

∂X2

)
,

(
∂θ

∂X

)
fluid

= κ

(
∂θ

∂X

)
solid

(5d)

X = 1 + ω θ = 0.0 (5e)

Y = 0 θ = 0.0 (5f)

Y = ω, 0 < X < 1

ζ = −
(

∂2ψ

∂Y 2

)
,

(
∂θ

∂Y

)
fluid

= κ

(
∂θ

∂Y

)
solid

(5g)

Y = 1 + ω, 0 < X < 1

ζ = −
(

∂2ψ

∂Y 2

)
,

(
∂θ

∂Y

)
fluid

= κ

(
∂θ

∂Y

)
solid

(5h)

Y = 1 + 2ω θ = 0.0 (5i)

On the fin θ = 1.0 (5j)

In writing Eqs. (1)–(5) the following dimensionless parameters
and definitions are used:

X = x

W
, Y = y

W

ζ = ΩW 2

α
, ψ = Ψ

α

Pr = ν/α, θ = (T − Tc)

(Th − Tc)

Ra = gβT (Th − Tc)W
3

αν

Ω = −
(

∂2Ψ

2
+ ∂2Ψ

2

)

∂x ∂y
v = −∂Ψ

∂x
, u = ∂Ψ

∂y
(6)

The average Nusselt number of the heated surfaces (left verti-
cal wall including both sides of thin fin) Nuh and the average
Nusselt number at the cold surfaces of the enclosure Nuc are,
respectively, given by:

Nuh = − 1

Z

Z∫
0

(
∂θ

∂N

)
dS, where Z = 1 + 2L (7)

Nuc = −1

3

4+2L∫
1+2L

(
∂θ

∂N

)
dS (8)

In order to monitor the qualitative effect of the presence of the
thin fin on the average heat transfer rate, the Nusselt number
ratio is introduced as:

NNR = Nuwith fin

Nuno fin
(9)

3. Numerical algorithm

The governing equations (1)–(4) for steady, laminar, two-
dimensional conjugate natural convection heat transfer in a
square enclosure with inclined thin fin are solved by us-
ing the Gauss–Seidel point-by-point method as discussed by
Patankar [22] along with under-relaxation factors for temper-
ature, vorticity, and stream functions. The convective terms
were approximated by the second-order upwind discretization
scheme and the diffusive terms with the central differencing
scheme. The convergence criterion employed was the standard
relative error, which is based on the maximum norm given by

 = ‖ζm − ζm−1‖∞
‖ζm‖∞

+ ‖θm − θm−1‖∞
‖θm‖∞

� 10−6 (10)

where the operator ‖η‖∞ indicates the maximum absolute
value of the variable over all the grid points in the compu-
tational domain and m and m − 1 represent the current and
previous iteration, respectively.

An unstructured grid of tri-angular mesh elements was em-
ployed in the current work. Numerical tests were performed to
select the suitable mesh resolution. Extensive tests were car-
ried out to ascertain grid convergence by deploying meshes of
11 892, 15 537, 19 621, and 25 324 nodes. The average Nusselt
number at the heated surfaces Nuh was monitored in the grid de-
pendence test. Accordingly, the mesh of 19 621 nodes was used
in the current work as the difference between Nuh values for the
finest two meshes is less than 1%. The mesh quality of the nu-
merical model was further assessed by means of Aspect Ratio,
EquiAngle Skew, and EquiSize Skew of each cell within the do-
main. The definitions and acceptable ranges for the employed
mesh quality indices are described elsewhere [17]. With respect
to the Aspect Ratio, 90% of the cells have 1.0 � QAR � 1.01
and 99% of the cells have 1.0 � QAR � 1.08. From EquiAngle
Skew viewpoint, 90% of the cells have 0.0 � QEAS � 0.08 and
99% of the cells have 0.0 � QEAS � 0.24. Furthermore, 90%
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Table 1
Comparison of the predicted average Nusselt number Nu on the solid/fluid in-
terface of a differentially-heated enclosure without a fin with Refs. [19,21]

Gr κ Kaminski and
Prakash [19]

Liaqat and
Baytas [21]

Present
work

103 1 0.87 0.88 0.87
5 1.02 1.02
10 1.04 1.04
∞ 1.06 1.07 1.06

105 1 2.08 2.08 2.08
5 3.42 3.42
10 3.72 3.72
∞ 4.08 4.12 4.07

106 1 2.87 2.84 2.86
5 5.89 5.91
10 6.81 6.84
∞ 7.99 8.07 8.09

of the cells have EquiSize Skew QESS of 0.0 � QESS � 0.01
and 99% of the cells have 0.0 � QESS � 0.1.

In order to reduce round-off error, double precision com-
putation was employed. The accuracy of numerical scheme is
validated by comparing the average Nusselt number Nu for a
differentially-heated square enclosure in the absence of the fin
under various Grashof numbers with those reported by Kamin-
ski and Prakash [19] and Liaqat and Baytas [21] as shown in
Table 1. These comparisons show good agreement. In addition,
the numerical scheme is validated by comparing against the re-
sults of various cases of the problem of Shi and Khodadadi [15]
who considered a similar configuration with a non-inclined fin,
thin walls, and adiabatic boundaries at the horizontal sides of
the cavity. Good agreement with the results of Shi and Kho-
dadadi [15] is observed as is evident from Fig. 2. Further vali-
dation is performed by comparing against the results of various
cases with inclined fin presented previously by Ben-Nakhi and
Chamkha [17] who considered a configuration that is similar to
that of Shi and Khodadadi [15] but with an inclined fin. Excel-
lent agreement was achieved for all cases considered, however,
the results are not presented in this paper due to space limita-
tions. It should be mentioned here that thermal conductivities
of the vertical and horizontal thick walls were set to 1012 and
10−12 W m−1 K−1, respectively, during the validation process
in order to mimic the thin walls situation with their appropriate
boundary conditions. These favorable comparisons lend con-
fidence in the numerical results to be presented in the next
section.

4. Result and discussion

In this section, numerical results for the streamline and tem-
perature contours for various values of the fin inclination an-
gle ε, fin dimensionless length L, solid-to-fluid thermal con-
ductivity ratio κ , and the Rayleigh number Ra will be reported.
All results are computed for a Prandtl number Pr = 0.707 and
a dimensionless solid wall thickness ω = 0.2. In addition, the
effects of κ and L on the change of the extreme dimensionless
stream function ψext will be shown and analyzed. Further-
more, representative results for the local, average and the Nus-
selt number ratio (Nu, Nu, and NNR) for various conditions will
be presented and discussed.

Fig. 3 presents steady-state contour plots for the streamline
and temperature for various values of κ for a square enclosure
without a fin (ε = 0◦ or ε = 180◦). It should be noted that small
values of κ correspond to pronounced thick wall effect while
large values of κ correspond to minimized thick wall effect and
κ = ∞ correspond to the thin wall condition. The rise of the
fluid due to buoyancy effects caused by heating of the left wall
of the enclosure and the consequent falling of the fluid on the
right and horizontal cold walls creates a clockwise-rotating vor-
tex. It is observed that the strength or values of the streamlines
increase as κ increases. In addition, the isotherms are stretched
in the thick wall regions for small values of κ while they be-
come more contained within the main enclosure as κ increases.
In fact, the thick wall effects diminish completely as they should
as κ → ∞.

Fig. 4 illustrates the effect of increasing the solid-to-fluid
thermal conductivity ratio κ from κ = 1 to κ = ∞ on the
streamline and isotherms in the presence of a thin fin inclined at
angle ε = 105◦ and having a dimensionless length L = 0.35. In
general, it is seen that the presence of the inclined fin at the cen-
ter of the heated surface of the enclosure splits the main vortex
in the enclosure creating a secondary vortex close to the upper
horizontal surface which remains attached to the main vortex.
As κ increases, ψext increases and the secondary vortex tends
to stretch closer to the upper left corner of the enclosure. By
comparison with Fig. 3 for the case of no fin present, it can be
seen that in the presence of the inclined fin, the rate of increase
of ψext as κ increases is slower than that of the no-fin case.
This is expected since the presence of the fin presents an ob-
stacle to the clockwise flow caused by the thermal buoyancy
effect. In addition, the effect of κ on the isotherms is similar
to that observed in the case of no fin. That is, strong thick wall
thermal effects are predicted for small values of κ and these ef-
fects reduce as κ increases reaching the case of no effects as
κ → ∞.

Fig. 5 depicts the effects of increasing κ and ε on the val-
ues of ψext for L = 0.35. In general, increasing κ decreases
the temperature drop in the thick walls. Accordingly, the ef-
fective temperature difference driving the flow in the enclosure
is increased resulting in increased buoyancy-induced flow rep-
resented by higher values of ψext. For all values of κ , as ε

increases, ψext increases reaching a maximum at ε = 90◦ and
then dips down to a relative minimum at ε = 120◦ before it in-
creases again as ε increases further. However, for κ = 1, ψext
decreases slowly from its maximum value at ε = 90◦ as ε in-
creases beyond 90◦. On the other hand, the relation between
L and ψext is complex because increasing L means increas-
ing the blockage effect to flow movement causing a weakening
effect on ψext and at the same time increasing L produces
extra heating yielding an enhanced flow driving force which in-
creases ψext. Furthermore, the blockage and heating effects
of the fin is dependent on ε. The complex relation between L

and ψext is illustrated in Fig. 6 for ε values from 0◦ to 180◦
and κ = 5.
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Fig. 2. Comparison of stream functions with those of Shi and Khodadadi [15] for Ra = 104.
The heat transfer behavior in the enclosure under consid-
eration can be explored by the heat flux distributions on the
solid–fluid interface. Fig. 7 presents the local Nusselt number
Nu profiles at the heated surfaces (heated surface of the enclo-
sure including both sides of the fin) for different values of ε

and two values of κ (κ = 1,∞) with L = 0.2, Pr = 0.707,
Ra = 105. For clarity, the Nu profile for ε = 90◦ is distinguished
by a thicker line, the Nu profiles for ε < 90◦ are designated
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Fig. 3. Effects of κ on the contour maps of the streamlines and isotherms for enclosure without fin, Pr = 0.707, and Ra = 105.
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Fig. 4. Effects of κ on the contour maps of the streamlines and isotherms for enclosure with fin ε = 105◦ , L = 0.35, Pr = 0.707, and Ra = 105.
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by solid thin lines, and the Nu profiles for ε > 90◦ are repre-
sented by dashed thin lines. In the absence of the thin fin, the
local Nusselt number profile has two peaks near the intersec-
tions with the adjacent horizontal cold walls (i.e., S = 0 and
S = 1.0). The sharp drop or increase in Nu near S = 0 and

Fig. 5. Effects of κ and ε on ψext for L = 0.35, Pr = 0.707 and Ra = 105.
S = 1 respectively is a characteristics of boundary layer flow
over a flat plate. The peak in the value of Nu in the neighbor-
hood of S = 1.0 is always greater than that in the neighborhood
of S = 0 due to flow direction which causes higher temperature
gradient in the neighborhood of S = 1.0 compared to that in the

Fig. 6. Effects of L and ε on ψext for κ = 5, Pr = 0.707 and Ra = 105.
(a)

(b)

Fig. 7. Effects of ε on Nu for L = 0.20, Pr = 0.707, Ra = 105, and different values of κ : (a) κ = 1 and (b) κ = ∞.
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(a)

(b)

Fig. 8. Effects of ε on Nu for L = 0.50, Pr = 0.707, Ra = 105, and different values of κ : (a) κ = 1 and (b) κ = ∞.
neighborhood of S = 0. For the same reason, the Nu value for
the no-fin case away from both ends (i.e., S = 0 and S = 1.0)
increases as the dimensionless distance S increases. However,
in the presence of a fin, the value of Nu exhibits a sharp reduc-
tion at the location of the wall/fin intersection where it becomes
a minimum there due to flow stagnation. In principle, the attach-
ment of a fin in the middle of the heated wall always reduces
Nu for the heated wall by a ratio that is related to ε and L. An
exception is at the upper end of the heated wall (i.e., S less than
0.135) where the value of Nu at high ε values increases till it
reaches its peak within the range 135◦ � ε � 150◦ after which
the value of Nu begins to decrease. This exception is due to the
creation of a secondary recirculating cell in the area confined
between the fin, heated wall, and upper cold wall.
In the presence of a thin fin, there are four heated surfaces
in the considered enclosure: the upper and lower halves of the
left wall, and the upper and lower surfaces of the fin. For the
upper half of the heated wall, the value of Nu decreases as ε in-
creases except for ε = 165◦ for which improvement in the value
of Nu is observed at the upper segment near the top cold surface
due to higher temperature differential caused by a local recircu-
lating cell. However, Nu is directly related to ε for the lower
half of the heated wall. This is mainly because of the inverse
relation between ε and the blockage strength of the fin on the
neighboring fluid flow. The relation between the local Nusselt
number and ε is more complex for the upper and lower surfaces
of the fin. For the upper surface of the fin, the value of Nu de-
creases as ε increases until the dip in the Nu profile is reached
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Fig. 9. Effects of ε, L, and κ on Nuh for Pr = 0.707 and Ra = 105.

at ε = 90◦ after which the value of Nu is directly related to ε

within the area near the fin base, and inversely related with the
area near the fin tip. Equivalently, for the lower surface of the
fin, Nu increases as ε increases until the peak in the Nu profile
is reached at ε = 90◦ after which the value of Nu is inversely
related to ε. Fig. 7 also shows that Nu is directly related to κ . It
is predicted that the thick wall effect represented by small val-
ues of κ(κ = 1) causes lower local Nusselt numbers compared
to the case of thin wall (κ = ∞). A similar behavior of Nu pro-
file was observed for L = 0.35, however, this is not shown due
to space limitations. For this and next figure, it should be noted
that in the absence of the thin fin, the Nu profile is split into two
halves positioned at their corresponding locations for the finned
cases. This is done for better illustration purposes.

Fig. 8 presents the Nu profiles at the heated surfaces for dif-
ferent ε values, L = 0.5, Pr = 0.707, Ra = 105, and two κ

values: 1 and ∞. For κ = 1, the Nu profiles are related to ε in
a manner similar to that observed for L = 0.2 and 0.35 except
for the segments near the fin tip of the upper and lower fin sur-
faces. In the upper segment near the fin tip, the local Nusselt
number is inversely related to ε. However, in the lower segment
near the fin tip the local Nusselt number is inversely related to
ε until the dip in the Nu profile is reached at ε = 90◦ afterward
Nu increases as ε increases. The Nu profiles for κ = ∞ behave
in a similar manner to those corresponding to κ = 1 except at
the upper and lower sectors near the fin tip. In both sectors near
the fin tip, Nu is inversely related to ε until the Nu profile for
ε = 90◦ is reached then the Nu profiles do not follow a specific
order.

Fig. 9 illustrates the influence of L and κ on the average
Nusselt number at the heated surfaces Nuh for ε values from 0◦
to 180◦. It is clearly observed that ε, L, and κ have significant
effects on Nuh. The figure demonstrates that Nuh is directly re-
lated to κ , and inversely related with L. The exception to this
rule is when κ = ∞ where Nuh for L = 0.5 is higher than Nuh
for L = 0.35 at ε � 25 and ε � 155. It should be noted here
that although the presence of fin always reduces Nuh, this does
not mean that the heat flux from the heated surfaces to cold sur-
face through the cavity is reduced. This fact is demonstrated in
Fig. 10. Effects of ε, L, and κ on Nuc for Pr = 0.707 and Ra = 105.

Fig. 11. Effects of Ra on Nuh and NNRh for ε = 30◦ , L = 0.5, κ = 5 and
Pr = 0.707.

Fig. 10, which presents the effects of ε, L, and κ on Nuc. The
dotted horizontal lines represent the no-fin cases for κ = 1, 5,
and ∞. Clearly, the existence of a thin fin with L = 0.2 always
reduces Nuc, while the existence of a thin fin with L = 0.35 or
L = 0.5 always increases Nuc except for L = 0.35, κ = 5 or ∞,
and in the vicinity of ε = 90◦Nuc is decreased.

Finally, Fig. 11 depicts the influence of the Rayleigh num-
ber Ra on the average Nusselt number of the heated surfaces
Nuh for ε = 0◦, 30◦and the heated surfaces Nusselt number
ratio NNRh for ε = 30◦. Clearly, Nuh is directly proportional
to Ra, while NNRh is inversely related to Ra in the range
103 � Ra � 107. That is, Nuh increases while NNRh decreases
as Ra increases.

5. Conclusions

Conjugate natural convection heat transfer in a square en-
closure which has three thick cooled thick walls and one thin
heated vertical wall with a heated inclined thin fin attached to its
middle was studied numerically. The governing equations for
this investigation were put in the dimensionless vorticity-stream
function formulation and were solved by the finite volume tech-
nique. Graphical results for the streamline and temperature
contours for several parametric conditions were presented and
discussed. It was found that the thin fin inclination angle and
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length, and solid-to-fluid thermal conductivity ratio have sig-
nificant effects on the local and average Nusselt number at the
heated surfaces of the enclosure/fin system. In general, the pres-
ence of an inclined thin fin reduces the average Nusselt number
at the heated surfaces in an unordered way. This is because
the addition of a fin to an enclosure has two counter-acting
effects: restraining natural convection and increasing heating
surface. Therefore, in design applications, it is possible to con-
trol heat transfer through an enclosure by proper selection of
both fin inclination angle and length based on the associated
Rayleigh number, the walls thickness and thermal conductivity
ratio. With respect to heat transfer optimization, which requires
average Nusselt number analyses over the whole fin inclination
angle range, it was concluded that the worst heat transfer per-
formance was close to ε = 90◦ for Pr = 0.707 and the ranges
for L, κ and Ra considered in the current study.
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